A Review of outcomes following operative fixation of Clavicular fractures over a 10-year period – a single tertiary trauma unit experience

Short form title: 10-year review of Clavicular fixation outcomes

Ms Eilis M Fitzgerald¹, BMed, BSurg, BSc Phys, MCh MRCSI,
Dr David M Moore¹, BMed, BSurg, BAO
Prof John F Quinlan¹, MCh, FFSEM, FRCS (Tr. & Orth.)

1. Tallaght University Hospital, Dublin, Ireland

Corresponding Author:
Ms Eilis Fitzgerald
Ballindangan, Mitchelstown, Co Cork, Ireland
mseilisfitzgerald@gmail.com

Disclaimers:
Funding: No support was received for this project in the form of grants, equipment or any other items.
Conflicts of interest: The authors, their immediate families, and any research foundation with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Tallaght University Hospital Clinical Research Ethics committee advised that our study was classified as being in the category of “Clinical Research, Retrospective Chart review” and as such was deemed exempt from formal ethical approval by the committee.
Abstract: (395 words)

Introduction: Early definitive fixation of clavicular fractures is rising in popularity when compared to conservative management. Despite this, the relative risk of subsequent hardware removal or revision surgery is relatively undocumented in the literature. The aim of this study was to review all clavicle fractures treated operatively in a single tertiary referral trauma unit and determine the true incidence of hardware removal and revision rates among this cohort.

Methods: A retrospective electronic review was performed in a single tertiary trauma unit for all open reduction internal fixations (ORIF) of clavicle fractures over 10 years (2010-2019 inclusive). All patients were cross referenced for hardware removal during the same period. Patients identified as having underwent ORIF clavicle were reviewed via the National Integrated Medical Imaging System (NIMIS) to identify the fracture pattern, fixation method, radiographic non-union or radiographic mal-union. Age, gender, time from injury to fixation and time from insertion to removal of hardware where relevant were also collected.

Results: Over the 10 year period from 2010 to 2019, 352 patients underwent ORIF of clavicular fractures. Following application of inclusion and exclusion criteria, 346 patients (76% male, 24% female) were analysed with a mean age of 34.46 years old (95% CI [33.02 – 35.91]). In total 54 (15.6%) patients underwent removal of hardware. When fracture type and fixation method were accounted for, only 11% of plate-fixations for mid-shaft fractures (n=29) were removed while 76% of clavicular hook plates for distal fractures (n=25) underwent removal (p<0.001). No distal clavicle fractures treated with locking plates underwent removal (n=23). Women were almost 3 times more likely to undergo removal of hardware than men (28.6% vs 11.5%, p<0.001). Seven patients (2%) underwent revision ORIF in the ten year period for non-union (n=3), malunion (n=2) and failure of fixation (n=2). Mean follow-up time was 1 year (366 days) for those who underwent subsequent surgery and 5.7 years (2087 days) for those who did not.
Conclusion: Clavicular fracture fixation using either locking or hook plates is a safe method of treatment with a very low re-operation rate for either hardware removal or revision. Women are more likely to request plate removal. Distal locking plates are a safe alternative to hook plates for distal 1/3 clavicle fractures with lower re-operation rates. Newer techniques are emerging for the management of distal fractures such as tight rope fixation and locking plate which also appear to be successful.

Level of Evidence: Level III; Retrospective Case-Control Design; Prognosis Study

Keywords: Clavicle, ORIF, Hardware removal, Revision ORIF

Clavicle fractures are a very common entity with management evolving over the last 20 years. An increasing proportion of surgeons are advocating for early definitive fixation for appropriate fracture configurations compared to the more traditional conservative approach which has previously been proven successful. This more recent shift towards operative management is largely due to increasing reports of unacceptably high rates of non-union, symptomatic mal-union as well as dissatisfied patient cohorts who were treated conservatively.

Furthermore, more novel techniques have emerged in recent years especially in the treatment of distal clavicle fractures. Hook plates were previously the mainstay of treatment for such fractures but reoperation for hardware removal is routinely recommended and undertaken, hence they are slowly being replaced with specific distal clavicle locking plates or tight rope fixation techniques. Locking plates have been shown to have equivalent union rates.
compared with hook plates but offer the advantage of not routinely requiring removal5,23,25,26.

Previous studies have demonstrated no difference in reoperation rates between plate types or location1, as well as any difference in union or plate removal rates however these were relatively small sample sizes2.

Whilst in many cases it is necessary, avoiding implant removal is desirable in order to prevent the morbidity associated with a second surgery along with the associated cost to the healthcare service18 and the patient. Re-operation is one of the most common complications discussed in the literature but there is a scarcity of large cohort studies available for review1,14.

The aim of this study was to review all clavicle fractures treated operatively in our unit and determine the true incidence of fracture types and the operative techniques used to treat these fractures and assess if this changed over the years. In addition, the study sought to evaluate our reoperation rate for both hardware removal and revision among this cohort. It also wished to identify any risk factors which impacted on the rate of second surgery among these patients so as to provide tailored, patient-centred, evidence-based decisions when managing these injuries.

\textbf{Materials & Methods:}

A retrospective cohort study was conducted via the hospital’s various electronic databases. Patients were identified using the unique theatre code used only for open reduction and internal fixation (ORIF) of clavicle fractures. A further review of all procedures involving removal of hardware over the same period from January 2010 to December 2020 was performed. These cohorts were then cross-referenced to identify patients that underwent ORIF clavicle and subsequent removal of that fixation metalwork. All patients identified as
having underwent ORIF clavicle were also individually reviewed via the National Integrated Medical Imaging System (NIMIS) which is a national information technology system of radiological data. This allowed the fracture pattern and fixation method to be identified as well as any radiographic non-union or mal-unions. Patient demographics such as age, sex, date of injury, date of surgery, date of hardware removal or re-intervention if applicable, were extracted from medical records and imaging systems.

Inclusion criteria were all surgically-treated fractures of the middle and distal thirds of clavicle between January 2010 and December 2020 at an urban tertiary referral university hospital. This included the use of conventional hook plates, low contact dynamic compression plates and pre-contoured locking plates. It also included distal clavicular pre-contoured locking plates, tight rope techniques and intra-medullary devices. Exclusion criteria were the absence of an internal fixation construction (e.g. EUA or MUA only) and fixation of an anatomical region other than the clavicle (E.g. AC joint). Cases which underwent revision were identified and analysed separately.

The primary outcomes were the need for removal of hardware for any reason and the need for revision surgery due to non-union or loss of fracture fixation. Differences in patient demographics and clinical characteristics by fixation method were examined and a univariate analysis was performed to examine associations between predictor variables and the primary outcomes. The unadjusted odds ratios were reported with 95% confidence intervals for each outcome. Statistical significance was determined using a type 1 error probability threshold of <5% (p<0.05). The end-point was defined as date of subsequent surgery. For those who did not undergo surgery the end point was the date of final data collection (01/04/2021). Mean
Follow-up time for patients was 5.7 years (2087) for those who did not undergo repeat surgeries and 1 year (366 days) for those requiring a subsequent surgery.

This study was classified as being in the category of “Clinical Research, Retrospective Chart review” by Tallaght University Hospital Institutional Review board. As such it was deemed exempt from formal ethical approval by the Research Ethics Committee of Tallaght University Hospital.

Results:

Over the 10 year period from 2010 to 2019 inclusive, 352 patients were identified using our electronic database as having undergone ORIF of clavicular fractures in a single tertiary trauma unit. Following application of inclusion and exclusion criteria and radiological review of patient data, 346 patients (76% male, 24% female) were correctly identified as having undergone ORIF clavicle during the timeframe (figure 1) with a mean age of 34.46 years old (95% CI [33.02 – 35.91]). 81% of fractures involved the middle one third of the clavicle while 19% involved the distal, or lateral, one third of the clavicle. 87% (n=301) clavicle fractures were treated with a locking plate construct, 10% with hook plates, 0.3% with Intramedullary fixation and 2.6% with tight rope fixation method with a mean time of 52.82 days from injury to operative fixation(n=299, range 0.5 – 1738 days). When treatment was subdivided into primary acute fixation within 4 weeks versus fixation for delayed / non union (>4/52 after injury), the mean time to fixation was 8 days (n=226, range 0.5-28 days) for primary fixation and 194 days until secondary fixation (n=73, range 28-1738 days).

In total 54 (15.6%) patients underwent removal of hardware, but when fracture and fixation method were accounted for, only 11% of plate-fixations for mid-shaft fractures (n=29) were removed while 76% of clavicular hook plates for distal fractures (n=25) underwent removal.
No distal clavicle fractures treated with locking plates underwent removal (n=23). 23% (n=17) of secondary fixations (for malunion / delayed union or non union) underwent removal whereas only 17% (n=39) of acute primary fixations underwent removal. The mean timeframe from initial surgery to secondary surgery, for any reason, was 366.34 days (95% CI [248.25-484.44]). Women were almost 3 times more likely to undergo removal of hardware than men (28.6% vs 11.5%, p<0.001). Seven patients (2%) underwent revision ORIF in the ten year period for non-union (n=3), malunion (n=2) and failure of fixation (n=2).

Discussion:
Clavicle fractures are a common injury dealt with by the orthopedic trauma surgeon. Although many of these fractures can be safely treated conservatively there has recently been an increased interest in the use of surgical interventions for certain subsets in order to decrease non-union rates and improve short-term outcomes. Indications for surgery include open fractures, neurovascular complications, significant comminution, severe displacement (>100%), clavicular shortening (>1.5-2cm) or floating shoulder. Furthermore the decision to operate may be influenced by the individual functional demands of the patient such as occupation or sports involvement.

Clavicle fractures are usually fixed with either a hook or a locking plate. Other surgical procedures have also been described, such as tension band wiring, intra-medullary pinning, trans-acromial K-wires, sub coracoid lasso and tightrope fixation. Given the vast number of treatment options it is no surprise that there lacks a consensus as to what the optimal method of fixation is.
Whilst hook plates are effective in maintaining reduction in distal clavicle fractures, reoperation for hardware removal is routinely recommended and undertaken\(^4,8,11\) due to complications such as acromial erosion, subacromial impingement and rotator cuff tear\(^4,6,8,11,12\). Distal clavicle fractures are relatively uncommon accounting for less than a third of clavicle fractures resulting in small cohorts of patients in the available literature\(^24,25\). Locking plates more recently have been modified to provide another option to the management of distal clavicle fractures\(^17\). Such pre-contoured distal locking plates have been shown to have equivalent union rates compared with hook plates but offer the advantage of not routinely requiring removal\(^1,12,5,9\). The use of a tight-rope technique has also been described as an alternative for the management of distal clavicle fractures and also avoids the need for scheduled re-operation for removal of hardware. Whilst in many cases it is necessary, avoiding implant removal is desirable in order to prevent the morbidity associated with a second surgery along with the associated cost to both the healthcare service\(^26\) and the patient. The heterogeneity of study designs and patient populations has made it difficult to extrapolate the optimal treatment method from the findings of meta-analyses with most studies comprising retrospective reports of a single fixation type\(^27,23\).

These results show that the use of hook plates in the management of distal clavicle fractures places a significant burden on the patient, the surgeon and the healthcare system in relation to the need for a scheduled re-operation. When newer techniques such as tight rope fixation, trans-osseous fixation or tailored distal clavicle locking plates were utilized for this fracture subtype, the results of this study showed neither of these techniques required re-operation for hardware removal or revision fixation.
Mid-shaft clavicles by far account for the majority of the cohort. They had a much lower removal rate at approximately 11% which was unsurprising given the known complications of hook plates when retained. However, this dataset does show slightly lower rates of re-operation than other international papers which quote anywhere from 12 to 20% \(^1,10,13\).

This study is the first paper, to the authors’ knowledge, to review 10 years of data from a single teaching unit. However, there are limitations to the trial, the biggest of which is the possibility of patients undergoing removal of hardware or revision surgery at another institution. Using the NIMIS system the study was able to review each case on the national database to ascertain if any procedures were done elsewhere but this method relies on radiological data which may not have been performed at time of removal for example. NIMIS also does not include every hospital in Ireland and again allows for a possibility of error.

Furthermore, the dataset does not elaborate on the indications for hardware removal and other than female gender we were not able to identify any further risk factors of significance. We hypothesise that female gender was a predictive factor due to the cosmetic effect of clavicular ORIF as we found no difference in any other variables between the sexes in relation to fracture type or intervention received.

Conclusion:

Clavicular fracture fixation with locking plates or hook plates is a safe method of treatment with a very low re-operation rate for either hardware removal or revision. Women are more likely to request plate removal. Distal locking plates are a safe alternative to hook plates for distal clavicle fractures and confer an added benefit that they do not warrant hardware removal in the future, which hook plates do. Newer techniques are emerging for the management of distal fractures such as tight rope fixation and locking plate and these appear to have a high success rate.
References:

10 year Review of Clavicular Fixation Outcomes

Figure Legend

Figure 1: Inclusion / Exclusion criteria selection process
"ORIF clavicle" patients identified via database

n = 352

Patients included

n = 346

<table>
<thead>
<tr>
<th>Type of Surgery</th>
<th>Details</th>
<th>Patients Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIF clavicle only</td>
<td>n = 285</td>
<td>94%</td>
</tr>
<tr>
<td>ORIF clavicle and removal of hardware</td>
<td>n = 54</td>
<td>15%</td>
</tr>
<tr>
<td>ORIF clavicle Revision</td>
<td>n = 7</td>
<td>2%</td>
</tr>
</tbody>
</table>

Patients Excluded n = 6

<table>
<thead>
<tr>
<th>Type of Surgery</th>
<th>Details</th>
<th>Patients Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MUA only</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>3 AC joint ORIF</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>1 incorrect code</td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>